Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)
نویسندگان
چکیده
LiFePO₄ is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV) application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO₄. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li⁺ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO₄ was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1-3xAlxFePO₄, Li1-4xZrxFePO₄ and Li1-6xWxFePO₄ materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV). In the case of LiFe1-yMyPO₄ (M = Mn, Co and Ni), solid solution formation was observed over a large range of y (0 < y ≤ 1). An increase of electrical conductivity for the substitution level y = 0.25 was observed. Electrons of 3d metals other than iron do not contribute to the electrical properties of LiFe1-yMyPO₄, and substitution level y > 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1-yMyPO₄ strongly depend on the Fe substitution level.
منابع مشابه
Doping LiMnPO4 with Cobalt and Nickel: A First Principle Study
A density functional theory (DFT) study has been carried out on transition metal phosphates with olivine structure and formula LiMPO4 (M = Fe, Mn, Co, Ni) to assess their potential as cathode materials in rechargeable Li-ion batteries based on their chemical and structural stability and high theoretical capacity. The investigation focuses on LiMnPO4, which could offer an improved cell potential...
متن کاملEnhanced HDN Performance of Al, Zr and Ti Modified NiW Catalysts by Using Co-Impregnation Method
The Al, Zr, and Ti modified MCM-41 materials were prepared by the post-synthesis method, and then the Ni-W species were introduced on them by using the co-impregnation method in order to obtain high-performance hydrodenitrogenation (HDN) catalysts. The activity of the catalysts was evaluated by the HDN reaction of quinoline. The optimum HDN activity was observed on the catalyst sup...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملFabrication and Electrochemical Characterization of Polyvinyl Chloride Based/Chitosan-co- Iron Nickel Oxide Nanoparticles Composite Heterogeneous Cation Exchange Membranes
In this research, polyvinylchloride based composite heterogeneous cation exchange membranes were prepared by the solution casting technique. Chitosan-co-iron nickel oxide nanoparticles were utilized as membrane surface modifier to improve the membranes electrochemical properties. The effect of additive nanoparticle concentration in the modifier solution on the properties of composite membranes ...
متن کاملEffect of Ti substitution on the microstructure and properties of Zr-Mn-V-Ni-AB[inf 2] type hydride electrode alloys
The electrochemical capacity, hydrogen absorbed/desorbed activation properties of alloy Zr(Mn0.1V0.3Ni0.6)2 were improved after Ti substitution for the Zr. The microstructure of Zr12xTixsMn0.1V0.3Ni0.6d2 sx 0, 0.5d alloys was analyzed by x-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive spectrum (EDS) analysis. A systematic structural analysis shows that t...
متن کامل